Понятия со словосочетанием «центр фигуры»

Связанные понятия

Арбелос (греч. άρβυλος — сапожный нож) — плоская геометрическая фигура, образованная большим полукругом, из которого вырезаны два меньших, диаметры которых лежат на диаметре большого и разбивают его на две части. Точнее, пусть A, B и C — точки на одной прямой, тогда три полуокружности с диаметрами AB, BC и AC, расположенные по одну сторону от этой прямой, ограничивают арбелос.
Салинон — это плоская геометрическая фигура, образованная четырьмя полуокружностями. Впервые исследована Архимедом.
Пентаго́ндодека́эдр (от др.-греч. δωδεκάεδρον — «пятиугольник» и 12 граней) — объёмная фигура с двенадцатью гранями в форме неправильных пятиугольников.
Купол можно рассматривать как призму, где один из многоугольников наполовину стянут путём объединения вершин попарно.
Растянутый многоугольник серединных точек вписанного многоугольника P — это другой вписанный в ту же самую окружность многоугольник, вершины которого являются серединами дуг между вершинами многоугольника P. Многоугольник может быть получен из серединного многоугольника (многоугольника, вершины которого лежат в серединах сторон), если провести радиусы из центра окружности через вершины серединного многоугольника.
Уплощённая треуго́льная клинорото́нда — один из многогранников Джонсона (J92, по Залгаллеру — М20).
Антипараллелограмм, или контрпараллелограмм, — плоский четырёхугольник, в котором каждые две противоположные стороны равны между собою, но не параллельны, в отличие от параллелограмма. Длинные противоположные стороны пересекаются между собою в точке, находящейся между их концами; пересекаются между собою и продолжения коротких сторон.
Противополо́жно скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J77, по Залгаллеру — М14+М6).
Ко́со скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J78, по Залгаллеру — М13+М6+М6).
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Два́жды ко́со скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J79, по Залгаллеру — М13+2М6).
Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием. По определению, каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно.
Ово́ид (лат. ovum — яйцо + греч. έιδος — подобный) — замкнутая гладкая выпуклая кривая, имеющая только одну ось симметрии. В инженерных приложениях это, как правило, коробовая кривая, состоящая из большой полуокружности и ещё трёх дуг окружностей.
Скру́ченный два́жды отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J82, по Залгаллеру — М14+М6).
Двугранный угол — пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями.
Дуга́ — одно из двух подмножеств окружности, на которые её разбивают любые две различные принадлежащие ей точки. Любые две точки A и B окружности разбивают её на две части; каждая из этих частей называется дугой.
Удлинённая четырёхуго́льная бипирами́да — один из многогранников Джонсона (J15, по Залгаллеру — М2+П4+М2).
Звёздчатый многоугольник — многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника. Стороны звёздчатого многоугольника могут пересекаться между собой. Существует множество звёздчатых многоугольников или звёзд, среди них пентаграмма, гексаграмма, две гептаграммы, октограмма, декаграмма, додекаграмма. Звёздчатые многоугольники можно получить, продолжая одновременно все стороны правильного многоугольника после их пересечения в его вершинах до их...
Два́жды противополо́жно отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J80, по Залгаллеру — М14).
В геометрии ротонда — любой член семейства диэдрально-симметричных многогранников. Они похожи на куполы, но вместо перемежающихся квадратов и треугольников перемежаются пятиугольники и треугольники (по отношению к оси). Пятискатная ротонда является телом Джонсона (J6).
Ромботриаконтáэдр( от греч. τριάκοντα (греч. τριάντα) — «тридцать» и εδρον — «грань») — выпуклый тридцатигранник с одинаковыми ромбическими гранями. Относится к каталановым телам. Является двойственным по отношению к икосододекаэдру и зоноэдром.

Подробнее: Ромботриаконтаэдр
Усечённая пирами́да — многогранник, образованный частью пирамиды отсечённой плоскостью параллельной её основанию.
Скру́ченно удлинённая четырёхуго́льная пирами́да — один из многогранников Джонсона (J10, по Залгаллеру — М2+А4).
Два́жды ко́со отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J81, по Залгаллеру — М13+М6).
Больша́я клинокоро́на — один из многогранников Джонсона (J88, по Залгаллеру — М23).
Два́жды ко́со отсечённый икоса́эдр — один из многогранников Джонсона (J62, по Залгаллеру — М7+М3).
Плосконосая квадратная мозаика — это полуправильное замощение плоскости. В каждой вершине сходятся три треугольника и два квадрата. Символ Шлефли мозаики — s{4,4}.
Три́жды отсечённый икоса́эдр — один из многогранников Джонсона (J63, по Залгаллеру — М7).
В геометрии треугольная призма — это призма с тремя боковыми гранями. Этот многогранник имеет в качестве граней треугольное основание, его копию, полученную в результате параллельного переноса и 3 грани, соединяющие соответствующие стороны. Прямая треугольная призма имеет прямоугольные боковые стороны, в противном случае призма называется косой.
В геометрии на плоскости, ромбоид — это параллелограмм, в котором смежные стороны имеют разные длины, и углы не являются прямыми.

Подробнее: Ромбоид
Наращённый усечённый куб — один из многогранников Джонсона (J66, по Залгаллеру — М11+М5).
Наращённый три́жды отсечённый икоса́эдр — один из многогранников Джонсона (J64, по Залгаллеру — М7+М1).
Отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J76, по Залгаллеру — М6+М14=2М6+М13).
Хо́рда (от греч. χορδή — струна) в планиметрии — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы, гиперболы).
Разрез — в геометрии мысленное рассечение предмета одной или несколькими плоскостями. На разрезе показываются также и те детали и их части, которые расположены за секущей плоскостью.
Три́жды отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J83, по Залгаллеру — М13).
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Тела вращения — объёмные тела, возникающие при вращении плоской геометрической фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости.
Наращённый усечённый тетра́эдр — один из многогранников Джонсона (J65, по Залгаллеру — М10+М4).
Середина отрезка — точка на заданном отрезке, находящаяся на равном расстоянии от обоих концов данного отрезка. Является центром масс как всего отрезка, так и его конечных точек.
Треугольник точек касания вневписанных окружностей треугольника образован соединением точек, в которых вневписанные окружности касаются треугольника.
Удлинённая четырёхуго́льная пирами́да — один из многогранников Джонсона (J8, по Залгаллеру — М2+П4).
В евклидовой геометрии равнобедренная трапеция — это выпуклый четырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины (свойство, которому удовлетворяет также параллелограмм). Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях...
Наращённая треуго́льная при́зма — один из многогранников Джонсона (J49, по Залгаллеру — П3+М2).
Пятиугольник — многоугольник с пятью углами. Также пятиугольником называют всякий предмет такой формы.
Два́жды ко́со скру́ченный ромбоикосододека́эдр — один из многогранников Джонсона (J74, по Залгаллеру — 2М6+М13+М6).
Говорят, что два и более объектов концентричны или коаксиальны, если они имеют один и тот же центр или ось. Окружности, правильные многоугольники, правильные многогранники и сферы могут быть концентричны друг другу (имея одну и ту же центральную точку), как могут быть концентричными и цилиндры (имея общую коаксиальную ось).

Подробнее: Концентричные объекты
Теорема о пяти окружностях утверждает, что, если дана цепочка из пяти окружностей с центрами на общей шестой окружности, при этом точки пересечения соседних окружностей в цепочке лежат на той же шестой окружности, то прямые, соединяющие вторые точки пересечения, образуют пентаграмму, вершины которой лежат на этих пяти окружностях.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я